Gray Codes for Torus and Edge Disjoint Hamiltonian Cycles

نویسندگان

  • Myung M. Bae
  • Bella Bose
چکیده

Lee distance Gray codes for k-ary n-cubes and torus networks are presented. Using these Lee distance Gray codes, it is further shown how to directly generate edge disjoint Hamiltonian cycles for a class of k-ary n-cubes, 2-D tori, and hypercubes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Edge-disjoint Hamiltonian cycles in two-dimensional torus

The torus is one of the popular topologies for the interconnecting processors to build high-performance multicomputers. This paper presents methods to generate edge-disjoint Hamil-tonian cycles in 2D tori. 1. Introduction. A multicomputer system consists of multiple nodes that communicate by exchanging messages through an interconnection network. At a minimum, each node normally has one or more...

متن کامل

Embedding Two Edge-Disjoint Hamiltonian Cycles and Two Equal Node-Disjoint Cycles into Twisted Cubes

The presence of edge-disjoint Hamiltonian cycles provides an advantage when implementing algorithms that require a ring structure by allowing message traffic to be spread evenly across the network. Edge-disjoint Hamiltonian cycles also provide the edge-fault tolerant Hamiltonicity of an interconnection network. Two node-disjoint cycles in a network are called equal if the number of nodes in the...

متن کامل

The property of edge-disjoint Hamiltonian cycles in transposition networks and hypercube-like networks

The presence of edge-disjoint Hamiltonian cycles provides an advantage when implementing algorithms that require a ring structure by allowing message traffic to be spread evenly across the network. Edge-disjoint Hamiltonian cycles also provide the edge-fault tolerant hamiltonicity of an interconnection network. In this paper, we first study the property of edge-disjoint Hamiltonian cycles in tr...

متن کامل

Edge-disjoint Hamiltonian Paths and Cycles in Tournaments

We describe sufficient conditions for the existence of Hamiltonian paths in oriented graphs and use these to provide a complete description of the tournaments with no two edge-disjoint Hamiltonian paths. We prove that tournaments with small irregularity have many edge-disjoint Hamiltonian cycles in support of Kelly's conjecture.

متن کامل

An Embedding of Multiple Edge-Disjoint Hamiltonian Cycles on Enhanced Pyramid Graphs

The enhanced pyramid graph was recently proposed as an interconnection network model in parallel processing for maximizing regularity in pyramid networks. We prove that there are two edge-disjoint Hamiltonian cycles in the enhanced pyramid networks. This investigation demonstrates its superior property in edge fault tolerance. This result is optimal in the sense that the minimum degree of the g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000